开源

🚀探索微软Phi-3模型:AI新纪元🌟-phi3

logo

ollama/phi3

Local deployment of the model
logo


摘要

Phi-3系列模型,微软的开源AI力作,以其3.8B和14B参数量,为自然语言处理带来新突破。Phi-3 Mini和Phi-3 Medium,分别针对不同应用场景,提供高效、安全的AI解决方案。

项目图片

内容

🌐 Phi-3系列,微软开发的开源AI模型家族,以其卓越的性能和灵活性,为自然语言处理领域带来革命性变革!Phi-3 Mini和Phi-3 Medium两大模型,分别拥有3.8B和14B参数量,满足不同场景需求。🔍

🚀 Phi-3 Mini,轻量级3.8B参数模型,专注于高质量数据和推理密集型任务,经过精细调优,确保指令遵循和安全性。🛡️ 在常识、语言理解等基准测试中,Phi-3 Mini-4K-Instruct表现卓越。🏆

🔧 Phi-3 Medium,14B参数,性能超越Gemini 1.0 Pro,适用于商业和研究,特别是在需要强推理和长文本处理的应用场景。📚

🌟 无论是在资源受限环境,还是对延迟敏感的场景,Phi-3系列都能提供强大的支持。开发者需注意,模型主要基于英语训练,其他语言可能表现不佳。🌐 此外,模型可能存在不公平、不可靠或冒犯性内容的风险,需谨慎使用。🚨

Run the model locally

Id

4f2222927938

cf611a26b048

cf611a26b048

ab0d71a0814b

94ce47285859

214c9ceb5140

b0a6824d6ba9

2538a4dd560c

cf611a26b048

92a08305e23f

1372226c9b0b

7a0ee8ddd91b

87d42cf3a64b

06195d5c378a

0d45fefe05bb

85a94efb79c6

3aa42cb65da9

f1d91573aa38

b8af0a87fe3b

1d0b237ac0c0

8c89f02e74e7

b44869982901

1d8e8b16704d

325e47441f3f

7e56b73c5446

4de15128ef23

98b4f4a2f662

621f05f2d49e

d7fd9927e592

44aec5aa964d

0efda84af8ae

8d6899ff682b

87e27f01007b

4f2222927938

40010fd60dc7

0dc429b5761b

58dabb8dab6e

bf51ffbfc6fd

b867d0390a90

4f2222927938

7ed2c3a2024e

5a157c52afff

786fb198d976

68e0cbe0eb8a

7ccd40684bd5

ffbd0ae55416

86b1e7aa6fd8

90771235c599

adc0589ce82e

d2a1bcb6ea9d

f71db22ea23b

7b07bdbff049

9971a6367aaa

71d5c0da0a45

9e6804ea5320

ce621d0c2d06

d5ea514251bf

3a368186663f

df35ca8fb243

416e85af3eae

a902ed3435bb

2f614430e421

bbae7edc39d4

6b7f8cbb8b25

4f2222927938

cf611a26b048

cf611a26b048

325e47441f3f

4f2222927938

4f2222927938

d5ea514251bf

Model

3.8b

14b

14b-instruct

14b-medium-128k-instruct-fp16

14b-medium-128k-instruct-q2_K

14b-medium-128k-instruct-q3_K_L

14b-medium-128k-instruct-q3_K_M

14b-medium-128k-instruct-q3_K_S

14b-medium-128k-instruct-q4_0

14b-medium-128k-instruct-q4_1

14b-medium-128k-instruct-q4_K_M

14b-medium-128k-instruct-q4_K_S

14b-medium-128k-instruct-q5_0

14b-medium-128k-instruct-q5_1

14b-medium-128k-instruct-q5_K_M

14b-medium-128k-instruct-q5_K_S

14b-medium-128k-instruct-q6_K

14b-medium-128k-instruct-q8_0

14b-medium-4k-instruct-fp16

14b-medium-4k-instruct-q2_K

14b-medium-4k-instruct-q3_K_L

14b-medium-4k-instruct-q3_K_M

14b-medium-4k-instruct-q3_K_S

14b-medium-4k-instruct-q4_0

14b-medium-4k-instruct-q4_1

14b-medium-4k-instruct-q4_K_M

14b-medium-4k-instruct-q4_K_S

14b-medium-4k-instruct-q5_0

14b-medium-4k-instruct-q5_1

14b-medium-4k-instruct-q5_K_M

14b-medium-4k-instruct-q5_K_S

14b-medium-4k-instruct-q6_K

14b-medium-4k-instruct-q8_0

3.8b-instruct

3.8b-mini-128k-instruct-fp16

3.8b-mini-128k-instruct-q2_K

3.8b-mini-128k-instruct-q3_K_L

3.8b-mini-128k-instruct-q3_K_M

3.8b-mini-128k-instruct-q3_K_S

3.8b-mini-128k-instruct-q4_0

3.8b-mini-128k-instruct-q4_1

3.8b-mini-128k-instruct-q4_K_M

3.8b-mini-128k-instruct-q4_K_S

3.8b-mini-128k-instruct-q5_0

3.8b-mini-128k-instruct-q5_1

3.8b-mini-128k-instruct-q5_K_M

3.8b-mini-128k-instruct-q5_K_S

3.8b-mini-128k-instruct-q6_K

3.8b-mini-128k-instruct-q8_0

3.8b-mini-4k-instruct-fp16

3.8b-mini-4k-instruct-q2_K

3.8b-mini-4k-instruct-q3_K_L

3.8b-mini-4k-instruct-q3_K_M

3.8b-mini-4k-instruct-q3_K_S

3.8b-mini-4k-instruct-q4_0

3.8b-mini-4k-instruct-q4_1

3.8b-mini-4k-instruct-q4_K_M

3.8b-mini-4k-instruct-q4_K_S

3.8b-mini-4k-instruct-q5_0

3.8b-mini-4k-instruct-q5_1

3.8b-mini-4k-instruct-q5_K_M

3.8b-mini-4k-instruct-q5_K_S

3.8b-mini-4k-instruct-q6_K

3.8b-mini-4k-instruct-q8_0

instruct

medium

medium-128k

medium-4k

mini

mini-128k

mini-4k

Size

2.2GB

7.9GB

7.9GB

28GB

5.1GB

7.5GB

6.9GB

6.1GB

7.9GB

8.8GB

8.6GB

8.0GB

9.6GB

10GB

10GB

9.6GB

11GB

15GB

28GB

5.1GB

7.5GB

6.9GB

6.1GB

7.9GB

8.8GB

8.6GB

8.0GB

9.6GB

10GB

10GB

9.6GB

11GB

15GB

2.2GB

7.6GB

1.4GB

2.1GB

2.0GB

1.7GB

2.2GB

2.4GB

2.4GB

2.2GB

2.6GB

2.9GB

2.8GB

2.6GB

3.1GB

4.1GB

7.6GB

1.4GB

2.1GB

2.0GB

1.7GB

2.2GB

2.4GB

2.4GB

2.2GB

2.6GB

2.9GB

2.8GB

2.6GB

3.1GB

4.1GB

2.2GB

7.9GB

7.9GB

7.9GB

2.2GB

2.2GB

2.4GB


关键词

自然语言处理 文本生成 内容创作

分类

商业应用 研究工具 效率提升
正文到此结束
本文目录